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1. Introduction

Charles Babbage’s vision of computing has largely been realized; we are on the
verge of realizing Vannevar Bush’s Memex; but, we are still far from passing the Tur-
ing Test. This article outlines a set of fundamental research problems that broaden
the Babbage, Bush, and Turing visions. They extend Babbage’s computational goal
to include highly secure, highly available, self-programming, self-managing, and
self-replicating systems. They extend Bush’s Memex vision to include a system
that automatically organizes indexes, digests, evaluates, and summarizes informa-
tion. They also extend Turing’s vision of intelligent machines to include prosthetic
vision, speech, hearing, and other senses. Each problem is simply stated and each
is orthogonal from the others, although they share some core technologies.

1.1. WHAT MAKES A GOOD LONG-RANGE RESEARCHGOAL? | believe a good
long-range goal should have five key properties:

Understandable The goal should be simple to state. A sentence, or at most a
paragraph, should suffice to explain the goal to intelligent people. Having a clear
statement helps recruit colleagues and support. It is also great to be able to tell
your friends and family what you actually do.

Challenging It should not be obvious how to achieve the goal. Indeed, often the
goal has been around for a long time. Most of the goals | am going to describe
have been explicit or implicit goals for many years. Often, some believe the goal
is impossible.

Useful If the goal is achieved, the results should be clearly useful to many
people—I do not mean just computer scientists, | mean people at large.

Testable Solutions to the goal should have a simple test so that one can measure
progress and one can tell when the goal is achieved.

Incremental It is very desirable that the goal has intermediate milestones so that
progress can be measured along the way. These small steps are what keep most
researchers going.
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1.2. SALABILITY : A SAMPLE GOAL. To give a specific example, much of my
work was motivated by thecalability goal described by John Cocke. The goal
is to devise a software and hardware architecture that scales up without limits.
There will be some limit: billions of dollars, or gigawatts, or just space; so, a
more realistic goal is to scale from one node to a million nodes all working on the
same problem.

1. Scalability: Devise a software and hardware architecture that scales up by a factor of
10°. That is, an application's storage and processing capacity can automatically grow by
a factor of a million; either doing jobs faster (10°x speedup) or doing larger jobs in the
same time (10°x scaleup), by just by adding more resources.

Scalability requires advances on most aspects of large computer systems. Scalable
systems grow by adding modules, each module performing a small part of the overall
task. As the system grows, data and computation migrate to the new modules.
When a module fails, the other modules mask this failure and continue offering
services. Automatic management, automatic parallelism, fault-tolerance, and load-
distribution are still challenging problems.

The benefit of this vision is that it suggests problems and a plan of attack. One can
start by working on automatic parallelism and load balancing. That, in turn, leads
to work on fault tolerance and automatic management. One can start by working
on the 10x scaleup problem with an eye to the larger problems.

My particular research focused on building highly parallel database systems, able
to service thousands of transactions per second. We developed a simple model that
describes when transactions can be run in parallel, and also showed how to provide
this parallelism automatically. That work led to studies of why computers fail and
how to improve computer availability. Lately, | have been exploring very large
database applications like http://terraserver.raatd http://SkyServer.sdss.org/.
Others have pursued the goal of scaling up scientific computing with Beowulf
clusters [Sterling et al. 1999], and others are using the whole Internet as a computer
(SETI@home.)

Returning to the scalability goal, how has work on scalability succeeded over the
years? Progress has been astonishing, for two reasons.

(1) There has been alot of it.
(2) Much of it has come from an unexpected direction—the Internet.

The Internet is a world-scale computer system that surprised us all—it is a com-
puter system of 100 million nodes. Today, it is merely doubling each year. It will
probably grow to be much larger. Many worry that we do not know how to scale
the network and the servers. | share that apprehension, and think that much more
research is needed on protocols and network engineering.

On the other hand, we do know how to build huge servers. Companies have
demonstrated single systems that can process a billion transactions per day, which
is comparable to all the cash transactions in the US in a day. It is comparable to all
the AOL interactions in a day. Itis a lot.

In addition, these systems can process a transaction for about a micro-dollar.
That is, they are very cheap. It is these cheap transactions that allow free access to
the Internet data servers. Accesses are paid for by advertising.
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FiG.1. Top: apicture of the 6,000 node computer at LANL. Bottom: Scaleabilty of computer systems
on the simple task of sorting data. For the last 15 years, sort speed and sorting performance/price have
doubled each year. This is progress is partly due to hardware and partly due to software.

Computer performance and price performance have improved 100% every year
since 1985. Progress has been a combination of hardware (60% improvement per
year) and software (40% improvement per year). Several more years of this progress
are in sight (see Figure 1).

Still, our scaleable-systems architectures have some gaping holes. Computer
scientists have yet to make parallel programming easy. Most of the successful
scaleable systems (databases, file servers, web servers, and online transaction pro-
cessors) are embarrassingly parallel. The parallelism comes from the application.
We have merely learned how to preserve it, rather than creating it automatically.

When it comes to running a big monolithic job on a highly parallel computer,
there has been modest progress. Parallel database systems automatically provide
parallelism and give answers more quickly. Parallel programming systems that ask
the programmer to explicitly write parallel programs have been embraced only as
a last resort. The best examples of this are the Beowulf clusters used by scientists
(http://wvww.beowulf.orgy, and the huge ASCI machines, consisting of thousands of
processors (see top of Figure 1). Both these groups report spectacular performance,
but they also report considerable pain.

Managing these huge clusters is also a serious problem. Virtually all the large
clusters have a custom-built management system. We will return to this issue later.

The scalability problem will become more urgent in the next decade. It appears
that new computer architectures will have multiple execution streams on a single
chip: so each processor chip will be an SMP (symmetric multiprocessor). Others
are pursuing processors imbedded in memories, disks, and network interface cards
(e.g., http://iram.cs.berkeley.edu/istoredfill another trend is the movement of

processors to Micro-Electro-Mechanical Systems (MEMS). Each $10 MEMS will
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have sensors, effectors, and onboard processing. Programming a collection of a
million MEMS systems is a scalability challenggdience New$997].

So, the scalability problem is still an interesting long-term goal. But, | would
like to describe a broad spectrum of such systems-research goals.

2. Long-Term IT Systems-Research Goals

The long-term research goals are presented in the context of three seminal visionar-
ies. In the 1870s, Charles Babbage had the vision of programmable computers that
could store information and could compute much faster than people. In the 1940s,
Vannevar Bush articulated his vision of a machine that stored all human knowledge.
In 1950, Alan Turing argued that machines would eventually be intelligent.

These are systems problems. Others have done an excellent job of articulating an
IT theory research agenda. Some of the problems here have a “and prove it” clause
and therefore pose challenging theoretical issues.

One area where | wish | had more to say is the topic of ubiquitous computing.
Alan Newell first articulated the vision of an intelligent universe in which every
part of our environment is intelligent and networked [Newell 1990]. Many of the
research problems mentioned here bear on this ubiquitous computing vision, but |
have been unable to state crisply a specific long-term research goal unique to it.

3. Turing’s Vision of Machine Intelligence

To begin, recall Alan Turing’s famous “Computing Machine
and Intelligence” paper published in 1950 [Turing 1950], Turi

argued that in 50 years, computers would be intelligent. ‘.‘E %

This was avery radical idea at that time. The debate th
raged then is largely echoed today: Will computers be tools
will they be conscious entities, having identity, volition, ar
free will? Turing was a pragmatist. He was just looking for intelligence, not trying
to define or evaluate free will. He proposed a test, now calledihieag Testwhich
for him was an intelligence litmus test.

3.1. THETURINGTEST. The Turing Testis based on thritation Gameplayed
by three people. In the imitation game, a man, a woman, and a judge are in three
separate rooms. The three cannot see one another, so they communicate via e-mail.
The judge questions them for five minutes, trying to discover which of the two is
the man and which is the woman. This would be very easy, except that the man lies
and pretends to be a woman. The woman tries to help the judge find the truth. If
the man is a really good impersonator, he might fool the judge 50% of the time. In
practice, it seems the judge is right about 70% of the time.

Now, the Turning Test replaces the man with a computer pretending to be a
woman. If the computer can fool the judge 30% of the time, it passes the Turing Test.

2. The Turing Test: Build a computer system that wins the imitation game at least
30% of the time.

Turing’s actual text on this matter is worth rereading. What he said was:

| believe that in about fifty years’ time it will be possible, to programme computers,
with a storage capacity of about®@o make them play the imitation game so well
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that an average interrogator will not have more than 70 per cent chance of making
the right identification after five minutes of questioning. The original question, “Can
machines think?”, | believe to be too meaningless to deserve discussion. Nevertheless
| believe that at the end of the century the use of words and general educated opinion
will have altered so much that one will be able to speak of machines thinking without
expecting to be contradicted.

With the benefit of hindsight, Turing’s predictions read very well. His technology
forecast was astonishingly accurate, if a little pessimistic. The typical computer
has the requisite capacity, and is comparably powerful. Turing estimated that the
human memory is between *aand 16° bytes, and the high end of that estimate
stands today.

On the other hand, his forecast for machine intelligence was optimistic. Few
people characterize computers as intelligent. You can interview ChatterBots on the
Internet (http://www.loebner.net/Prizef/loebner-prize.htamd judge for yourself.

I think they are still a long way from passing the Turing Test. But, there has been
enormous progress in the last 50 years, and | expect that eventually a machine will
indeed pass the Turing Test. To be more specific, | think it will happen within the
next 50 years because | am persuaded by the argument that we are nearing parity
with the storage and computational power of simple brains.

To date, machine-intelligence has been more of a partnership with scientists: a
symbiotic relationship. To give some stunning examples of progress in machine
intelligence, computers helped with the proofs of several theorems (the four-color
problem is the most famous example [Turing 1950]), and have solved a few open
problems in mathematics. It was front page news when IBM’s Deep Blue beat the
world chess champion. Computers help design almost everything now—they are
used in conceptualization, simulation, manufacturing, testing, and evaluation.

Inall these roles, computers are acting as tools and collaborators rather than intel-
ligent machines. Vernor Vinge calls this IA (intelligence amplification) as opposed
to Al (artificial intelligence) [Vinge 1993]. These computers are not forming new
concepts. They are typically executing static programs with very little adaptation or
learning. In the best cases, there is a pre-established structure in which parameters
automatically converge to optimal settings for the environment. This is adaptation,
but it is not learning new things they way children or spiders do.

Despite this progress, there is general pessimism about machine intelligence and
artificial intelligence (Al). We are still in Al winter. The Al community promised
breakthroughs, but they did not deliver. Enough people have gotten into enough
trouble on the Turing Test, that it has given rise to the expresBibimg Tar Pit
“Where everything is possible but nothing is eagyl"completeis short for even
harder than NP complete. This is in part a pun on Turing’s most famous contri-
bution: the proof that very simple computers can compute anything computable.
Paradoxically, today it is much easier to research machine intelligence because the
machines are so much faster and so much less expensive.

So, why the optimism about Al? The answer is¢benting argumerthat Turing
used. Based on counting storage capacity and processing speed as Turing did in the
guote above, desktop machines should be about as intelligent as a spider or a frog,
and supercomputers ought to be nearing human intelligence.

The counting argument goes as follows. Various experiments and measures in-
dicate that the human brain stores at most bytes (100 terabytes). The neurons
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and synaptic fabric can execute about 100 tera-operations per second. This is about
thirty times more powerful than the biggest computers today. So, we should start
seeing intelligence in these supercomputers any day now (just kidding).

This counting argument is similar to the argument that the human genome is
about a billion base pairs. 90% of it is junk, 90% of the residue is in common
with chimpanzees, and 90% of that residue is in common with all people. So each
individual has just a million unique base pairs (and would fit on a floppy disk).

Both these arguments appear to be true. But both indicate that we are missing
somethingvery fundamental. Clearly, there is more than a megabyte difference
among babies. Clearly, the software and databases we have for our supercomputers
are not on a track to pass the Turing Test in the next decade. Something quite
different is needed. Probably an entirely different approach is needed.

We have been handed a puzzle: genomes and brains work. They use much more
compact programming languages than we do (their programs are a lot smaller than
the ones we are familiar with). Understanding the answer to these puzzles is a
wonderful long-term research goal.

3.2. THREEMORE TURING TESTS PROSTHETICHEARING, SPEECH AND VISION.

Implicit in the Turing Test, are two subchallenges that in themselves are quite
daunting: (1) read and understand as well as a human, and (2) think and write as
well as a human. Both of these appear to be as difficult as the Turing Test itself.

Interestingly, there are three other problems that appear to be easier, but still very
difficult: There has been great progress on computers hearing and identifying natural
language, music, and other sounds. Speech-to-text systems are now quite usable.
Certainly, they have benefited from faster and cheaper computers, but the algorithms
have also benefited from deeper language understanding, using dictionaries, good
natural language parsers, and semantic nets. Progress in this area is steady; the error
rate improves about 10% per year. Right now, unlimited-vocabulary, continuous
speech with a trained speaker and good microphone recognizes about 95% of the
words. | joke that computers understand English much better than most people (note:
most people do not understand English at all). Joking aside, many blind, hearing-
impaired, and disabled people use speech-to-text and text-to-speech systems for
reading, listening, or typing.

Making machines speak from a prepared text has received less attention than the
speech-recognition problem, but it is an important way for machines to communi-
cate with people.

There was a major thrust in language translation in the 1950s, but the topic has
fallen out of favor. Certainly, simple language-translation systems exist today. A
system that passes the Turing Test in English will likely have a very rich internal
representation. If one teaches such a system a second language, say Mandarin,
then the computer would likely have a similar internal representation for infor-
mation in that language. This opens up the possibility for faithful translation be-
tween languages. There may be a more direct path to good language translation,
but so far it is not obvious. Babelfish (http://babelfish.altavista.yasrd fair ex-
ample of the current state of the art. It translates context-free sentences between
English and French, German, Japanese, Italian, Korean, Mandarin, Portuguese,
and Spanish. It translates the sentence “Please pass the Turing Test” to the French
“Veuillez passer I'essai de Turing”, which translates back to “Please pass the test
of Turing.”
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Another sensory challenge is visual recognition: build a system that can identify
objects and recognize dynamic object behaviors in a scene (horse-running, man-
smiling, body gestures .).

Visual rendering is an area where computers already outshine all but the best of
us. Again, this is a man-machine symbiosis, but the “special effects” and characters
from Lucasfilm and Pixar are stunning. Still, the challenge remains to make it easy
for kids and adults to create such illusions in real time for fun or to communi-
cate ideas.

The Turing Test also suggests prosthetic memory, but I'll reserve that for Bush’s
section. So the three additional Turing Tests are:

3. Speech to text: Hear as well as a native speaker.

4. Text to speech: Speak as well as a native speaker.

5. See as well as a person: Recognize objects and behavior.

Progress in these three areas has been a boon to the handicapped and is useful
in certain industrial settings. Optical character recognition is used to scan text
and speech synthesizers read the text aloud. Speech recognition systems are used
by deaf people to listen to telephone calls and are used by people with carpal
tunnel syndrome and other disabilities to enter text and commands. Indeed, some
programmers use voice input to do their programming.

For a majority of the deaf, devices that couple directly to the auditory nerve could
convert sounds to nerve impulses; thereby, replacing the eardrum and the cochlea.
Unfortunately, nobody yet understands the coding used by the body. But, it seems
likely that this problem will eventually be solved.

Longer term, these prosthetics will help a much wider audience. They will rev-
olutionize the interface between computers and people. When computers can see
and hear, it should be much easier and less intrusive to communicate with them.
They will also help us to see better, hear better, and remember better.

| hope you agree that these four “Turing” tests meet the criterion | set out for
a good goal: they are understandable, challenging, useful, testable, and each has
incremental steps.

4, Bush’'s Memex

Vannevar Bush was an early information technologist \
built analog computers at MIT. During World War I, he r
the Office of Scientific Research and Development. As the
ended, he wrote a wonderful piece for the government c4 .
the Endless Frontier[Bush 1945a] that defined Americd "
science policy for fifty years. —

In 1945, Bush published a visionary piece “As We May ThinkTime Atlantic
Monthly [Bush 1945b]. In that article, he describbtiémex a desk that stored “a
billion books”, newspapers, pamphlets, journals, and other literature, all hyper-
linked together. In addition, Bush proposed a set of glasses with an integral camera
that would photograph things on demand, and a dictapMahat would record
what was said. All this information was also fed into Memex.

Memex could be searched by looking up documents, or by following references
from one document to another. In addition, anyone could annotate a document

A
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with links, and those annotated documents could be shared among users. Bush
realized that finding information in Memex would be a challenge, so he postulated
“association search,” finding documents that matched some similarity criteria.

Bush proposed that the machine should recognize spoken commands, and that
it type when spoken to. And, if that was not enough, he casually mentioned that
“a direct electrical path to the human nervous system” might be a more efficient
and effective way to ask questions and get answers.

Well, 50 years later, much of Memex is almost here. Most scientific literature is
online. The scientific literature doubles every 10 to 15 years, and most of the last
15 years are online. Much of Turing’s work and Bush’s articles are online. Most
literature is also online, but it is protected by copyright and so not visible to the web.

A tiny part of the Library of Congress is online—but that part has many more
visitors than the visitors to the buildings in Washington D.C. Similarly, the ACM97
conference was recorded and converted to a web site. After one month, five times
more people had visited the web site than the original conference. After 18 months,
100,000 people had spent a total of 50,000 hours watching the presentations on the
web site. This is substantially more people and time than attendees at the actual
event. The site now averages 200 visitors and 100 hours per week.

This is all wonderful, but anyone who has used the web is aware of its limita-
tions: (1) it is hard to find things on the web and (2) many things you want are
not yet on the web. Still, the web is very impressive and comes close to Bush’s
vision. It is the first place | look for information. Information is increasingly mi-
grating online to cyberspace. Most new information is created online. Today, it
is about 500 times less expensive to store 100 letters (1 MB) on magnetic disk,
than to store them in a file cabinet (a penny versus 5 dollars.) Similarly, storing a
photo online is about 10 times less expensive than printing it and then storing the
photo in a shoebox. Every year, the cost of cyberspace drops while the cost of real
space rises.

The second reason for migrating information in cyberspace is that it can be
searched by robots. Programs can scan large document collections, and find those
that match some predicate. This is faster, cheaper, easier, and more reliable than
people searching the documents. These searches can also be done from anywhere—
a document in England can be easily accessed by someone in Australia.

So, why isn’t everything in Cyberspace? Well, the simple answer is that most
information is valuable property and currently, cyberspace does not have much
respect for property rights. Indeed, the cyberspace culture is that all information
should be freely available to anyone anytime. Perhaps the information may come
cluttered with advertising, but otherwise it should be free. As a consequence, most
information on the web is indeed advertising in one form or another.

There are substantial technical issues in protecting intellectual property, but the
really thorny issues revolve around the law (e.g., What protection does each party
have under the law given that cyberspace is transnational?), and around business
issues (e.g., What are the economic implications of this change?). These issues
retard the move of “high-value” content to the Internet and prevent libraries from
offering Internet access to their collections. Often, customers must come to the
physical library to browse the electronic assets.

Several technical solutions to copy-protect intellectual property are on the table.
They all allow the property owner to be paid for use of his property on a per-view,
or subscription, or time basis. They also allow the viewers and listeners to use
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the property easily and anonymously. But, until the legal and business issues are
resolved, these technical solutions will be of little use.

Perhaps better schemes will be devised that protect intellectual property, but,
in the meantime, we as scientists must work to get our scientific literature online
and freely available. Much of it was paid for by taxpayers or corporations, so it
should not be locked behind publisher’s copyrights. To their credit, our technical
society, the ACM, has taken a very progressive view on web publishing. Your ACM
technical articles can be posted on your web site, your department’s web site, and on
the Computer Science Online Research Repository (CoRR). | hope other societies
will follow ACM’s lead on this.

4.1. EERSONALMEMEX. Returning to the research challenges, the sixth prob-
lem is to build a personal Memex. A box that records everything you see, heatr,
or read. Of course, it must come with some safeguards so thatyonlgan get
information out of it. But, when asked, it should find the relevant item and display
it to you. The key thing about this Memex is that it does not do any data analysis
or summarization; it just returns what it sees and hears.

6. Personal Memex: Record everything a person sees and hears, and quickly
retrieve any item on request.

Since it only records what you see and hear, personal Memex seems not to violate
any copyright issues [Wells-Branscomb 1995]. It still raises some difficult ethical
issues. If we have a private conversation, does your Memex have the right to disclose
our conversation to others? Can you sell the conversation without my permission?
If one takes a very conservative approach: only record with permission and make
everything private, then Memex seems within legal and ethical bounds. But the
designers must be vigilant on these privacy issues.

Memex seems feasible today for everything but video. A personal record of
everything you ever read is about 25 GB. Recording everything you hear is a few
terabytes. A personal Memex will grow at 250 megabytes (MB) per year to hold the
things you read, and 100 gigabytes (GB) per year to hold the things you hear. This is
just the capacity of one magnetic disk. So, if you start recording now, you should be
able to fit your information on one disk for the rest of your life (disc capacity grows
more quickly than your demands). The hardware cost would be less than $200/year.

Video Memex seems beyond our storage technology today, but in a few decades,
it will likely be economic. TV-quality video is about 10 terabytes (TB) per year—a
petabyte (PB) per lifetime. For a few more decades, it will cost more than most
individuals can afford. People will likely want very high definition and stereo images
of what they see; so the storage demand could be much larger. On the other hand,
techniques that recognize objects might give huge image compression. At a terabyte
a year, the best we can offer with current compression technology is ten TV-quality
frames per second. Each decade the quality willimprove at least 100-fold as storage
capacity grows. Capturing, storing, organizing, and presenting this information is
a fascinating long-term research goal.

4.2. WoRrLD MEMEX. What about Bush’s vision of puttingll professionally
produced information into Memex? Interestingly enough, a book is less than a
megabyte of text and all the books and other printed literature is about a petabyte
in Unicode. There are about 500,000 professionally produced movies (most very
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short). If you record them with DVD quality, they come to about a petabyte. If you
scanned all the books and other literature in the Library of Congress, the images
would be a few petabytes. There are 3.5 million sound recordings (most short),
which add a few more petabytes. So the consumer-quality digitized contents of
the Library of Congress total a few petabytes. Librarians who want to preserve the
images and sound want 100x more fidelity in recording and scanning the images,
thus getting an exabyte. Recording all TV and radio broadcasts (everywhere) would
add 100 PB per year.

Michael Lesk [1997] did a nice analysis of the question “How much infor-
mation is there?” He concludes that there are 10 or 20 exabytes (an exabyte is
108 bytes) of recorded information (excluding personal and surveillance video-
tapes). Peter Lyman, Hal Varian, and their students did a much more detailed
study (http://www.sims.berkeley.edu/research/projects/how-much-thitt/came
to similar conclusions. An interesting fact is that the storage industry shipped an
exabyte of disk storage in 1999 and about 100 exabytes of tape storage. Nearline
(tape) and online (disk) storage cost between a $10 k and $100 k per terabyte.
Prices are falling faster than Moore’s law—storage will likely be a hundred times
cheaper in ten years. So, we are getting close to the time when we can record most
information very inexpensively. For example, a lifetime cyberspace cemetery plot
for your most recent 1 MB research report or photo of your family should cost
about 25 cents. That is 10 cents for this year, 5 cents for next year, 5 cents for the
successive years, and 5 cents for insurance.

Where does this lead us? If everything will be in cyberspace, how do we find any-
thing? Anyone who has used the web search engines knows both joy and frustration:
sometimes they are wonderful and find just what you want. They do some summa-
rization, giving the title and first few sentences. But they do very little real analysis
or summarization.

So, the challenge after a personal Memex that just returns exactly what you
have seen, undigested is a Memex that analyzes a large corpus of material and
presents it to you an a convenient way. Raj Reddy described a system that can read
a textbook and then answer the questions at the end of the text as well as a (good)
college student [Reddy 1996]. A more demanding task is to take a corpus like the
Internet or the Computer Science journals, or Encyclopedia Britannica, and be able
to answer summarization questions about it as well as a human expert in that field.

Once we master text, the next obvious step is to build a similar system that
can digest a library of sounds (speeches, conversations, mukié@ third chal-
lenge is a system that can absorb and summarize a collection of pictures, movies,
and other imagery. The Library of Congress has 115 million text and graphic
items; the Smithsonian has 140 million items which are 3D (e.g., the Wright
Brothers airplane). Moving those items to cyberspace is an interesting challenge.
The visible human (http://www.nIm.nih.gov/research/visible/visitwenan.htmi
millimeter slices of two cadavers give a sense of where this might go. An-
other exciting project is digitizing Michelangelo’s sculpture and architecture
(http://graphics.stanford.edu/projects/mjch/

7. World Memex: Build a system that, given a text corpus, can answer questions
about the text and summarize the text as precisely and quickly as a human expert
in that field. Do the same for music, images, art, and cinema.
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The challenge in each case is to automatically parse and organize the information.
Then, when someone has a question, the question can be posed in a natural interface
that combines language, gesture, graphics, and forms interfaces. The system should
respond with answers which are appropriate to the level of the user.

This is a demanding task. It is probably Al Complete, but it an excellent goal,
probably simpler and more useful than a computer that plays the imitation game as
well as a human.

4.3. TELEPRESENCE One interesting aspect of being able torecord everythingis
that other people can observe the event, either immediately or retrospectively. | now
routinely listento lectures recorded at another research institution. Sometimes, these
are “live”, but usually they are on-demand. This is extraordinarily convenient—
indeed, many of us find this time-shifting to be even more valuable than space-
shifting. But, it is fundamentally just television-on-demand; or if it is audio only,
just radio-on-demand—turning the Internet into the world’s most expensive VCR.

A much higher-quality experience is possible with the use of computers and
virtual reality. By recording an event in high fidelity from several angles, computers
can reconstruct any scene at high fidelity from any perspective. This allows a viewer
to sit anywhere in the space, or wander around the space. For a sporting event, the
spectator can be on the field watching the action close up. For a business meeting,
the participant can sit in the meeting and look about to read facial gestures and
body language as the meeting progresses.

The challenge is to record events and then create a virtual environment on demand
that allows the observer to experience the event as well as actually being there. This
is calledTeleobservebecause it is really geared to a passive observer of an event—
either because it is a past event, or because there are so many observers that they
must be passive (they are watching, not interacting). Television and radio give a
low-quality version of this today, but they are completely passive.

The next challenge is to allow the participant to interact with the other members
of the event, that is, b&elepresentTelepresence already exists in the form of
telephones, teleconferences, and chat rooms. But, again the experience there is very
much lower quality than actually being present. Indeed, people often travel long
distances just to get the improved experience. The operational test for Telepresence
is that a group of students taking a telepresent class score as well as students who
were physically present in the classroom with the instructor. And that the instructor
has the same rapport with the telepresent students, as he has with the physically
present ones.

8. Telepresence: Simulate being some other place retrospectively as an observer
(Teleoberserver): hear and see as well as actually being there, and as well as a
participant. Simulate being some other place as a participant (Telepresent):
interacting with others and with the environment as though you are actually there.

There is great interest in allowing a telepresent person to interact physically with
the world via a robot. The robot is electrical and mechanical engineering, the rest
of the system is information technology. That is why | have left out the robot. As
Dave Huffman observed: “Computer Science has the patent on the byte and the
algorithm, Electrical Engineering has the electron, and Physics has the patent on
energy and matter.”
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Performance/price improvements seem to be accelerating. There appear to be three growth curves:
(1) Before transistors (1890-1960), performance/price was doubling every seven years. (2) With
discrete electronics performance/price was doubling every 2.3 years between 1955 and 1985. (3)
Since 1985 performance/price has doubled every year with VLSI. Sources Hans Moravec, Larry
Roberts, and Gordon Bell [1999].

5. Charles Babbage’s Computers

Turing’s and Bush’s visions are heady stuff: machine inte
gence, recording everything, and telepresence. Now it is 1
to consider long-term research issues for traditional com|
ers. Charles Babbage (1791-1871) designed two compute
difference enginghat did numeric computations well, and
fully programmableanalytical enginethat had punched car
programs, a 3-address instruction set, and a memory to hold variables. Babbage
loved to compute things and was always looking for trends and patterns. He wanted

these machines to help him do his computations.

By 1955, Babbage'’s vision of a computer had been realized. By then, computers
with the power he envisioned were generating tables of numbers, were doing book-
keeping, and were generally doing what computers do. Certainly, there is more to
do on Babbage’s vision. We need better computational algorithms, and better and
faster machines.

| want to focus on another aspect of Babbage’s computers. What happens when
computers become free, infinitely fast, with infinite storage, and infinite band-
width? Now, this is not likely to happen anytime soon. But, computation has gotten
a 10 million times cheaper since 1950 and a trillion times cheaper since 1899 (see
Figure 2). Indeed, in the last decade they have gotten a thousand times cheaper. So,
from the perspective of 1950, computers today are almost free and have almost
infinite speed, storage, and bandwidth. Moore’s law predicts a doubling every
18 months. This means that, in the next 18 months, there will be as much new
storage as all storage ever built, as much new processing as all the processors ever
built. The area under the curve in the next 18 months equals the area under the
curve for all human history.

Figure 2 charts how things have changed since Babbage’s time. It measures
the priceperformance of these systems using Larry Roberts’ performance/price
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metric:
OperationsPer_Secondx Bits_Per_Operation

SystemPrice

This measuresits-processed per dollarin 1969, Roberts observed that
this metric was doubling about every 18 months. This was contemporaneous
with Gordon Moore’s observation about gates-per-silicon-chip doubling, but
was measured at the system level. Using data from Hans Moravac’s web site
(http:/iwww.frc.ri.cmu.eduthpm/book98), and some corrections from Gordon
Bell, we plotted the data from Herman Hollerith forward. Between 1890 and 1945,
systems were either mechanical or electromechanical. Their performance doubled
about every seven years. In the 1950s, computing shifted to tubes and transistors
and the doubling time dropped to 2.3 years. In 1985, microprocessors and VLSI
came on the scene. Through a combination of lower systems prices and much faster
machines, the doubling time has dropped to one year. Similar graphs apply to the
price performance of storage and bandwidth.

This acceleration in performance/price is astonishing; and, it changes the rules.
When processing, storage, and transmission cost microdollars, then the only real
value is the data and its organization. But we computer scientists have some dirty
laundry: our “best” programs typically have a bug for every thousand lines of code,
and our “free” computers cost at least a thousand dollars a year in care-and-feeding
known as system administration.

Computers are inexpensive today—a few hundred dollars for a palmtop or desk-
top computer, a few thousand dollars for a workstation, and perhaps a few tens of
thousands for a server. We do not want to pay a large operations staff to manage
these inexpensive systems. Rather, we want a self-organizing system that manages
itself. For simple systems like handheld computers, the customer just wants the
system to work—always be up and never lose data. When the system needs repair-
ing, it should “call home” and schedule a fix. Either the replacement system arrives
in the mail, or a replacement module arrives in the mail—and no information has
been lost. If it is a software or data problem, the software or data is just refreshed
from the server-in-the-sky. If you buy a new appliance, you just plug it in and it
refreshes from the server-in-the-sky (just as though the old appliance had failed).

This is the vision that many companies are working towards in building informa-
tion appliances. You can see a prototype of it by looking at the way your web browser
maintains itself (quietly installing components and repairing itself as needed).

5.1. TROUBLE-FREE SYSTEMS. So, who manages the server-in-the-sky?
Servers are more complex. They have semicustom applications; they have much
heavier load; and often they provide the very services the hand-helds, appliances,
and desktops depend on. To some extent, the complexity has not disappeared, it has
just moved to the servers.

People who own servers do not mind managing the server content, that is their
business. But, they do not want to be systems management experts. So, server
systems should be self-managing. The human systems manager should set goals,
polices, and a budget. The system should do the rest. It should distribute work
among the servers. When new modules arrive, they should just add to the cluster
when they are plugged in. When a server fails, its storage should have already been
replicated elsewhere, so the service can move to the new location. When some
hardware breaks, the system should diagnose itself and order replacement modules
that arrive by express mail. Hardware and software upgrades should be automatic.

PerformancéPrice =
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This suggests the very first of the Babbage goals: trouble-free systems.

9. Trouble-Free Systems: Build a system used by millions of people each day and
yet administered and managed by a single part-time person.

The operational test for this is that the system serves millions of people each
day, and yet it is managed by a fraction of a person who does all the administrative
tasks. Currently, such a system would need 24-hour a day coverage by a substantial
staff, with special expertise required for upgrades, maintenance, system growth,
database administration, backups, network management, and the like.

5.2. DEPENDABLE SYSTEMS. Two issues hiding in the trouble-free-system re-
quirements deserve special attention. There has been a rash of security problems
recently: Melissa, Chernobyl, and now a mathematical simplification of RSA en-
cryption that makes 512-bit keys seem dangerously small.

We cannot trust our assets to cyberspace if this trend continues. A major challenge
for systems designers is to develop a system that services only authorized uses.
Service cannot be denied. Attackers cannot destroy data, nor can they force the
system to deny service to authorized uses. Moreover, users cannot see data unless
they are so authorized.

The added challenge here is that most systems are penetrated by stealing creden-
tials and entering as an authorized user. Any authentication based on passwords or
other tokens seems too insecure. | believe we will use physiometric authenticators
like retinal scans or some other unforgeable test—and that all software will be
signed in unforgeable ways.

The operational test for this research goal is that a tiger team cannot penetrate the
system. Unfortunately, that test does not really prove security. So this is one of those
instances where the security system must rest jproaf that it is secure, and that
all the threats are known and are guarded against. If this is an impossible goal, then
prove that.

The second attribute is that the system should always be available. We have gone
from 90% availability in the 1950s to 99.99% availability today for well-managed
systems. Web users experience about 99% availability due to the fragile nature of
the web, its protocols, and the current emphasis on time-to-market.

Nonetheless, we have added three 9s in 45 years, or about 15 years per order-
of-magnitude improvement in availability. We should aim for five more 9s: an
expectation of one second outage in a century. This is an extreme goal, but it seems
achievable if hardware is very cheap and bandwidth is very high. One can replicate
the services in many places, use transactions to manage the data consistency, use
design diversity to avoid common mode failures, and quickly repair nodes when
they fail. Again, this is not something you will be able to test: so achieving this
goal will require careful analysis and proof.

10. Secure System: Assure that the system of problem 9 services only authorized
users, service cannot be denied by unauthorized users, and information cannot be
stolen (and prove it.)

11. AlwaysUp: Assure that the system is unavailable for less than one second per
hundred years—eight 9's of availability (and prove it.)
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5.3. AUTOMATIC PROGRAMMING. This brings us to the final problem: Soft-
ware is expensive to write. It is the only thing in cyberspace that is getting more
expensive and less reliable. Individual pieces of software are not really less reli-
able; it is just that the typical program has one bug per thousand lines after it has
been tested and retested. The typical software product grows, and so adds bugs as
it grows.

You might ask how programs could be so expensive. It is simple: designing,
creating, and documenting a program costs about $20 per line. It costs about 150%
of that to test the code. Then, once the code is shipped, it costs that much again to
support and maintain the code over its lifetime.

This is grim news. As computers become cheaper, there will be more and more
programs and this burden will get worse and worse.

The solution so far is to write fewer lines of code by moving to high-level
nonprocedural languages. There have been some big successes. Code reuse from
SAP, PeopleSoft, and others are an enormous savings to large companies building
semicustom applications. The companies still write a lot of code, but only a small
fraction of what they would have written otherwise.

The user-written code for many database applications and many web applications
is tiny. The tools in these areas are very impressive. Often they are based on a
scripting language like JavaScript and a set of prebuilt objects (again an example of
software reuse). End users are able to create impressive web sites and applications
using these tools.

If your problem fits one of these prebuilt paradigms, then you are in luck. If not,
you are back to programming in C++ or Java and producing 5 to 50 lines of code a
day at a cost of $100 per line of code.

So, what is the solution? How can we get past this logjam? Automatic program-
ming has been the Holy Grail of programming language and system resarch for
the last 45 years. Sad to report, there has been relatively little progress—perhaps a
factor of 10, but certainly not a factor of 1,000, improvement in productivity unless
your problem fits one of the application-generator paradigms mentioned earlier.

Perhaps the methodical software-engineering approaches will finally yield fruit,
but | am pessimistic. | believe that an entirely new approach is needed. Perhaps
it is too soon, because this is a Turing Tar Pit. | believe that we need (1) a high-
level specification language that is a thousand times easier and more powerful than
current languages, (2) computers that are able to compile the language, and (3) a
language that is powerful enough to describe all applications.

We have systems today that do any two of these three things, but none that does all
three. In essence, this is the imitation given for a programming staff. The customer
comes to the programming staff and describes the application. The staff returns
with a proposed design. There is discussion, a prototype is built and there is more
discussion. Eventually, the desired application is built.

12. Automatic Programmer: Devise a specification language or user interface that:
(a) makes it easy for people to express designs (1,000x easier),
(b) computers can compile, and
(c) can describe all applications (is complete).

The system should reason about application, asking questions about exception cases
and incomplete specification. But it should not be onerous to use.
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The operational test is replacing the programming staff with a computer. The
computer should produce a result that is better and that requires no more time than
dealing with a typical human staff. Yes, it will be awhile until we have such a system,
but if Alan Turing was right about machine intelligence, it's just a matter of time.

6. Summary

These are a dozen long-term IT research problems. | suspect that, in 50 years,
researchers will have made substantial progress on each of these problems. Para-
doxically, many (5) of the dozen problems appear to require machine intelligence
as envisioned by Alan Turing.

The problems fall in the three broad categories: Turing’s intelligent machines
improving the human-computer interface; Bush’'s Memex recording, analyzing, and
summarizing everything that happens; and Babbage’s computers that will finally
be civilized so that they program themselves, never fail, and are safe.

No matter how it turns out, | am sure it will be very exciting. As | said at the
beginning, progress appears to be accelerating; the base-technology progress, in
the next 18 months, will equal all previous progress, if Moore’s law holds. And
there are many more doublings after that.

A Dozen Long-Term Systems Research Problems.

1. Scalability: Devise a software and hardware architecture that scales up by a factor of 10°.
That is, an application's storage and processing capacity can automatically grow by a
factor of a million, doing jobs faster (10°x speedup) or doing larger jobs in the same time
(10 scaleup), just by adding more resources.

2. The Turing Test: Build a computer system that wins the imitation game at least 30% of the
time.

Speech to text: Hear as well as a native speaker.
Text to speech: Speak as well as a native speaker.

See as well as a person: Recognize objects and motion.

ENEC N

Personal Memex: Record everything a person sees and hears, and quickly retrieve any item
on request.

7. World Memex: Build a system that given a text corpus, can answer questions about the text
and summarize the text as precisely and quickly as a human expert in that field. Do the
same for music, images, art, and cinema.

8. Telepresence:  Simulate being some other place retrospectively as an observer
(Teleoberserver): hear and see as well as actually being there, and as well as a
participant. Simulate being some other place as a participant (Telepresent): interacting
with others and with the environment as though you are actually there.

9. Trouble-Free Systems: Build a system used by millions of people each day and yet
administered and managed by a single part-time person.

10. Secure System: Assure that the system of problem 9 services only authorized users, service
cannot be denied by unauthorized users, and information cannot be stolen (and prove it.)

11. AlwaysUp: Assure that the system is unavailable for less than one second per hundred
years—eight 9's of availability (and prove it).

12. Automatic Programmer: Devise a specification language or user interface that:

(a) makes it easy for people to express designs (1,000x easier),

(b) computers can compile, and

(¢) can describe all applications (is complete).

The system should reason about application, asking questions about exception cases and
incomplete specification. But it should not be onerous to use.
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